蝴蝶定律,在1815年,西欧的一本通俗杂志《男士日记》刊登,过圆的弦AB的中点M任意引两条弦CD和EF,连ED,CF分别交AB于P.Q,则MP=MQ。由于问题中图形的圆内部分像一只蝴蝶,蝴蝶定律因此得名。1815年,西欧的一本通俗杂志《男士日记》上刊登了一个后来被成为蝴蝶定律的集合征解题:过圆的弦AB的中点M任意引两条弦CD和EF,连ED,CF分别交AB于P.Q,则MP=MQ。由于问题中图形的圆内部分像一只蝴蝶,蝴蝶定律因此得名。证明它是初等集合的近代著名问题之一。
蝴蝶定律有哪些
蝴蝶定理一共有四大结论!他们分别是:
一、蝴蝶模型中左右部分(翅膀)面积相等。
二、蝴蝶模型中对角线分开的相邻两个三角形的面积比相等
三、相对的两个三角形的面积的乘积相等
四、上下相对的两个三角形的面积比等于上下底 的平方比。
蝴蝶模型的四大结论如下:1、相似图形,面积比等于对边比的平方也就是:S1:S2=a^2/b^2。2、
S1:S2:S3: S4=a2: b2: ab: ab。 3、
S1xS2=S3xS4(由S1/S3=S4/S2推导出)。4、 A0:BO=(S1+S3):(S2+S4)。
蝴蝶定理(Butterfly Theorem),是古代欧氏平面几何中最精彩的结果之一。
这个命题最早出现在1815年,由W.G.霍纳提出证明。而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,题目的图形像一只蝴蝶。这个定理的证法不胜枚举,仍然被数学爱好者研究,在考试中时有各种变形。
霍纳证法:
过O作OLLED,OT丄CF,垂足为L、T
连接ON,OM,OS,SL,ST
可知/F=/D<C=ZE(同弧所对的圆周角相等)
ESD△CSF(AAA)
.DS/FS=DE/FC
根据垂径定理得:DL=DE/2,FT=FC/2
∴DS/FS=DL/FT
又·/D=/F
·∧DSLSAFST
./SLD=/STF
即/SLN=/STM
S是AB的中点所以OSLAB(垂径定理逆定理)
./OSN=/OLN=90°
N,!四点共圆(对角互补的四边形共
同理,0,T,M,S四点共圆
./STM=/SOM,/SLN=/SON(同弧所对的圆周角相等)
./SON=/SOM
∴<OTS=/OMS,<OLS=<ONS(同弧所对的圆周角相等)
∴/OMS=/ONS
OSLAB
.在△OSM和△OSN
/MSO=/NSO
/OMS=/ONS
OS=0S
∴△SOM≌△SON (AAS)
∴MS=NS
作图法
从X向AM和DM作垂线,设垂足分别为X'和X"。类似地,从Y向BM和CM作垂线,设垂足分别为Y'和 Y"。
语音朗读: